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Propagation Constants of a Waveguide Containing

Parallel Sheets of Finite Conductivity

HOWARD R. WITT, SENIOR MEMBER, IEEE, RITA E. BISS, MEMBER, IEEE,

AND EDWARD L. PRICE, SENIOR MEMBER, IEEE

Abstract—The propagation constants of a rectangular wavegnide
containing periodic, parallel sheetshaving finite conductivity were deter-
mined using an iterative compnter program. The dispersion equation was

found in a matrix formulation which was conducive to computer solution.

This equation was solved for various values of conductivity and sheet

spacing. Comparisons were made with the propagation constants found

assuming an infinite array of tbhs parallel resistive sheets in free space for

the case where the direetion of propagation and the electric field vector

were both parallel to the sheets. The propagation constants for the infinite

array case have been determined by both conformal mapping techniques

for certain limiting conditions and by a computer solution of the dispersion

eqnation for sheet spacings and conductivities of interest. The results

should prove useful for the design of absorbing elements and terminations

for wavegnides.

I. INTRODUCTION

1?

OR PURPOSES of analysis, the waveguide was

assumed to be rectangular with perfectly conducting

walls and attenuation provided by an array of resistive

sheets of finite thickness parallel to the side walls. Using the

transverse resonance method, the dispersion equation was

written in a matrix formulation suitable for an iterative

computer program. Computer solutions were obtained for

several representative values of bulk conductivity and dif-

ferent quantities of sheets in a 30 cm wide waveguide. Con-

verting the Iossy sheets to the alternate thin-sheet representa-

tion of ohms per unit square permitted direct comparison

with the infinite array representation.

Computer solutions to the infinite array of parallel re-

sistive sheets were also obtained both to check the range

of validity of the approximate solutions of Suetake and

Griemsmann [1] as well as to provide a comparison with

the waveguide approximation.

It is shown that when the frequency is 1.5 to 2 times the

TEIO mode cutoff frequency in the unloaded waveguide and

the number of sheets exceeds 3 or 4, the loaded waveguide

solutions closely approach the infinite array solutions. In

physical terms, the conducting boundary is decoupled by

the resistive sheets. Thus, an attenuating grid can be designed
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using the infinite array theory regardless of the cross section

of the duct—subject only to the limitation that the actual

grid contain at least 3 sheets.

II. MODEL CONFIGURATION

The propagation constants for a single dielectric slab in

a rectangular waveguide [2]–[6], and the expected micro-

wave attenuation have been studied previously. A means for

determining the propagation constants of several parallel

sheets having finite conductivity in a rectangular waveguide

are discussed here. These results are compared to the propa-

gation constant and the impedance found for the funda-

mental TE mode of a plane wave propagating through an

infinite array of parallel resistive sheets [1] where the direc-

tion of propagation and the electric field vector were both

parallel to the sheets. In both media, the slab-loaded wave-

guide and the infinite resistive sheet array, the transcendental

equation was found through the use of a transverse reso-

nance procedure. For the infinite array case the dispersion

equation has been solved by con formal mapping techniques

[1]. In addition, a number of solutions of practical interest

were obtained through a computer solution of the dispersion

equation. The computer results provided more data than

that obtained by the conformal mapping solutions.

In the analysis presented in this paper a transverse reso-

nance procedure is used to examine the propagation char-

acteristics of a waveguide containing an arbitrary number of

uniformly spaced parallel sheets having finite conductivity.

The Iossy sheets are parallel to two walls of the waveguide

and the outer walls are all assumed to be perfectly conduct-

ing. The results of the two approaches are compared and for

sheet spacing and conductivity values of interest, the results

are quite similar.

III. ANALYTICAL APPROACH

The model which was studied is shown in Fig. 1. There

is an arbitrary number of parallel resistive sheets of equal

spacing within a rectangular waveguide. A hybrid of the

usual E- and H-type modes is required for this problem and

it is convenient to classify the modes as longitudinal section

electric (LSE) or longitudinal section magnetic (LSM). The

LSE modes are those for which the electric field is confined

to longitudinal planes parallel to the resistive sheets. For

LSM modes the magnetic field is confined to planes parallel

to the resistive sheets.

There are a number of approaches to the problem. First,

Maxwell’s equations can be solved completely in each
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Fig. 1. Waveguide with parallel absorbing sheets.

homogeneous region separately; that is, in each resistive

sheet and each air space, and the fields matched at the

various boundaries. This procedure can always be carried

out, but it becomes extremely cumbersome for more than

one or two sheets. In addition, the entire process must be

repeated if the number of sheets is changed.

If the sheets are spaced periodically across the guide, then

a second method can be attempted. The conductivity is a

periodic function of x and may be expanded into a Fourier

series which, when substituted into the wave equation, yields

a form that applies everywhere within the guide. However,

the overall medium is now inhomogeneous and the separa-

tion of variables leads to Hill’s equation involving the co-

ordinate x. Formal solutions may be written down and the

boundary conditions applied, but the dispersion equation

takes the form of an infinite-by-infinite determinant. Ap-

proximate solutions for the allowed propagation constants

may be obtained only under quite restrictive assumptions.

A number of perturbation and variational techniques sug-

gest themselves, but it is found that either they are accurate

only for very limited ranges of parameter values or else

they are much too cumbersome to be useful. The transverse

resonance method, while not yielding all details of the solu-

tion, does supply the propagation constants which are all

that are desired in this analysis. The procedure involves

evaluation of transverse impedances in each region and im-

pedance matching at the interfaces between the regions.

This method is exact, can accommodate any number of re-

sistive sheets, and lends itself to computer solution.

Development of Working Equations

1) LtlE Modes: Figure 1 depicts the model chosen. The

parameter c is the space between sheets and between the end

sheets and the walls. The permeability P, permittivity e,

conductivity a, and wavenumber k are

p=po, e=co,cl= o kz = lcoz = cd2/.LoEo

between the sheets

~=po, E= KCO, u=uO

‘z=kr’=a’~o’o(’-’:)

within the sheets. The electric field must satisfy the wave

equation

VXVXE–lc2E=0 (1]

where the value of k appropriate to the region is inserted.

The working equations for LSE modes will be found first.

Since the structure is uniform along the z-dimension, the z-

variations must be of the form e–~’. For LSE modes the field

components are [2], [3]

Ez=O ‘Z=[$+k’’le-”

The potential function Y satisfies

13’y)
--+$+w=o

(2)

(3)

where k.2 = 72+k2 and k. and k are constants within a given

region. In (2) Z and k are given by

between the sheets
—

Z= z,= ( ;k=?+,‘G).Uo

Coco

within the sheets.

Separating variables by letting ~= X(x) Y(y), we obtain

d2 y

—+k,’Y=o
dy’

d2x

~ / ~z2x = (),

dx’
(4)

Solving the differential equation in y and applying the

boundary conditions for the perfectly conducting waveguide

walls at y = O, b gives

Y. = A. COSk.ny (5)

where

k.. = ‘: ) n integer.

The separation constant k. is independent of location.

Solutions for the differential equation in x maybe written

as a superposition of incident and reflected waves

where R is a transverse reflection coefficient. The separation
constant k. has one value in air and another in the sheets..- ..- ..... . .
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Utilizing the results of (2), (5), and (6) the electric field

vectors can be expressed as

E. = EU+ + EU– = GVII + R,eW.*]e-j~zz (7)

Es = Es+ + E.– = G, [1 + Re2hz]e-j& (8)

where GU(y, z)= jkZy Ye–~z and GJy, z)= jkZ(dY/dy)e–r’.

The + and – superscripts denote the portions of the solu-

tions that vary as e–~k’z and e~k=’,respectively.

We define a +x directed impedance as

Ez+ E.- Ez-
z2=E$+=– — Or zZ. .—. —.

Hu+, H,- Hg-
(9)

2

Application of (2) reveals that

z.=:.
z

The fields parallel to the longitudinal sheets are

El = av[Ev+ + Ev-] + az[EZ+ + E,-]

H1 = aU[HU+ + H.-] + a,[H,+ + H.-]

and these may be transformed into

El = V(x) [aVGV + aZGz]

HZ = I(z) [– aVG, + a.GV]

through use of (7), (8), and (9). The voltage

current 1(x) are defined by

V(x) = [1 + Re2~k~Z]e–~k’Z

e–jk.z

l(z) = [1 — Re2~k~Z]— .
z.

V(x) and the

(lo)

(11)

At some new location (x+d), the voltage and current are

V(z + d) = [1 + Re2~k~ cz+dl]e–~k~ (’+~) (12)

e–ik. (x+d)

I(x + cl) = [1 — Re2~k”(z+d)]
z. “

(13)

The voltage and current at one location may be expressed

in terms of the voltage and current at another location in

the same medium as follows:

v(z) = Tnnv(z + d) + WZJ($ + d)

I(z) = rrZ,lV(Z + d) + m221(x + d).

In matrix notation these equations become
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I 1

Fig. 2. Network representation of medium.

Solving (10)-(13) for the coefficients yields

mll = m2.2 = cos k.d

m12 = jZ, sin lend

j sin kzd
m21 =

z. “

The transformations correspond to a representation of the

medium by a two-port network in the x-dimension as de-

picted in Fig. 2. At a boundary between two different media

the tangential electric and magnetic fields must be con-

tinuous, hence the voltage and current as defined here must

be continuous. Transforming across a boundary is equivalent

to connecting two networks in tandem.

Matrices [MI] and [M.2] are the matrix [M] evaluated for

appropriate distances in the first and second media, respec-

tively. Then

[::1= ‘“EI and [%L’”’E:l

which combine to give

[::] = [M11[M21[::] = [~1[;:]

where [P] = [MJ [Mz]. This procedure may be carried

through as many sections as desired,

Suppose there are N identical resistive sheets in the guide.

There are then 2N+ 1 regions and 2N+ 1 matrices. The

transformation from x= o to x= a then becomes

VI

[1 [1
= [M,] [M,] .0. [Mw+J ~:

II

[1
. [Me] ~:

where

‘“”]=r: xl= ‘M1][M2] “ “ “ ‘M2N+1]

For our model all odd matrices are identical and all even

matrices are identical. Let [MJ represent the matrix for a

free space section of width c and [MJ the matrix for a

resistive sheet of width 8. The elements for these matrices are

rc08 kzoc jZZO sin kzoc1

1[M,] = jsinkh. ~os~ ,C J (14)

z=”
z

rcOs k.,8 jZz, sin k=, 61

1[M,] = jsinkz,~ ~os ~ ~

1

(15)

z.,
w’
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Fig. 3. Unit cell equivalences.

where kso is an unknown to be determined, and

kzrz = kz02 + (K – l)k02 – jti~oull

An adjacent air space and resistive sheet can be repre-

sented as an equivalent cell as shown in Fig. 3. Other equiva-

lent cells are possible but this one is most convenient for this

application since it involves only two adjacent regions. Then

for N unit cells in tandem plus one air space

-v,

[1 I, = ‘P’”’fi’’rz]= ‘MO’[Rl ‘1’)

and

From (16) and (17)

VI = m11°v2N+2 + m12°12N+2 (18)

II = m21°v2N+2 + m22°12N+2. (19)

The dispersion relationships can be stated in a general

sense in terms of transverse impedances at x= O and x= a.

If we define ZL = VJIl and ZR = V2N+2/12N+2, substitute into

(18) and (19) and equate the determinant to zero, we obtain

the dispersion equation

[??’2210ZR + 7)’222°]zL = ??’hlOzR + m12°.

If, however, the terminations are symmetric as in a wave-

guide, we recognize two mode types. For one type El is an

even distribution about x= a/2 and for the other type El is

an odd distribution about x= a/2. Then

V2N+2 = i- VI; I,N+2 = T I upper sign for even modes

lower sign for odd modes

and using these in (18) and (19) gives two expressions

(20)

(21)

For a waveguide with perfectly conducting walls El= O at

x= O and x= a, thus ZL = O. For this particular case, (20) re-

duces to the dispersion equation

~120 = ()

which yields all LSE modes. The alternate form

??22.2’= T 1

is obtained from (21). Even modes are given by nzz2.0= — 1

and odd modes by mts” = +1. Multiplication of the matrices

to obtain explicit formulas for mlz’ or ms~” in terms of kzo
need not be written out as this can be included in the com-

puter program as an iterative process.

2) LSM Modes: The development for LSM modes is

identical with that for LSE modes. The only difference is in

the expression for the x-directed impedance which for LSM

modes becomes

(22)

The dispersion equation for LSE modes applies to LSM

modes if the LSE impedance is replaced by the LSM imped-

ance given in (22).

IV. COMPUTER RESULTS

A digital computer was used to find the propagation con-

stants for the waveguide containing conductive sheets. The

procedure involved assuming an initial value for kzo and

then making successive corrections to kxo to make m12° or

mzz” T 1 approach zero. The estimation procedure requires

careful attention to ensure that solutions for the desired mode

are obtained. A similar procedure was used to solve the

dispersion equation for the infinite array of sheets as pre-

sented in Appendix A.

Practical considerations dictated the choice of parameter

values. Computations were made for conductive sheets of

thickness 0.025 cm, and for waveguides of 30 cm and 40

cm width. Frequencies from 1 to 12 GHz and conductivities

from 5 to 55 mhos/m were considered. This frequency range

excludes the cutoff region for the equivalent lossless wave-

guides. The permittivity of the lossy material was assumed

to be 5e0, although it was found that for the thin sheets of

interest here the attenuation is only very slightly dependent

upon permittivity. In actual lossy materials the conductivity

and permittivity are frequency sensitive, however, such vari-

ations with frequency were not included in this program.

Most data were obtained for lowest-order LSE mode since

it is the dominant mode of the structure. Some results for

an LSM mode were found for comparison purposes. A mode

numbering system compatible with the numbering system

for the waveguide with the sheets removed cannot be estab-

lished. This occurs because of the mode dependence upon

conductivity. For low conductivity the lowest-order LSE
mode corresponds closely to the LSEIO mode of an empty

waveguide. As conductivity is increased, the sheets tend to

decouple the sections of the guide and the lowest-order LSE

mode approaches the LSEN+I,O mode of the empty wave-

guide, where N denotes the number of sheets.

The attenuation of a wave propagating in the LSE mode
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down a waveguide for various values of conductivity are

shown on Fig. 4(a), (b), and (c). The values are shown for

three, five, and seven conductive sheets uniformly spaced

across a waveguide of 30 cm width. The curves at each value

of conductivity show attenuation peaks of increasing ampli-

tude and greater width in frequency as the number of sheets

is increased. The increase in attenuation with number of

sheets is simply a result of the guide containing a larger

amount of resistive material. For the dimensions and con-

ductivities considered +J4p/e> k,. Thus, in a waveguide

completely filled with conductive material (as discussed in

Appendix B) the attenuation is a monotonically increasing

function of frequency and approaches am= $u~p/e as fre-

quency approaches infinity. This represents the maximum

attenuation that can be achieved as the number of sheets is

increased. The three cases shown have peaks much below

this maximum; however, this limit indicates that the peaks

must become higher, shift toward higher frequencies and

become broader as the number of sheets is increased. The

attenuation curves also show a decrease and broadening of

the peaks with decreasing conductivity. For sufficiently low

conductivities the attenuation would become a mono-

tonically decreasing function of frequency above the cutoff

frequency, since a completely filled waveguide exhibits a

monotonically decreasing attenuation with frequency for

~~4P/e<kc.

At sufficiently low frequencies the resistive sheets act

much like good conductors and tend to decouple the fields

in the regions separated by the sheets. Losses are low, but

attenuation due to the cutoff characteristics of the guide

may be high. At sufficiently high frequencies the sheets be-

have as good dielectrics and losses are again low. At some

intermediate frequency attenuation due to the resistive

sheets will be a maximum and the curve peaks. For a com-

pletely filled guide this peak is at infinity whereas for par-

tially filled guides it occurs at a lower frequency. The ampli-

tude of the peak decreases with conductivity and for low

conductivities there may not be a peak above the cutoff

frequency of the equivalent lossless guide.

Attenuation versus frequency for constant sheet spacing

but different numbers of sheets is shown in Fig. 5(a), (b),

and (c). The three cases are for a spacing of 5 cm in a guide

of 30 cm width, 40 cm width, and for an infinite array of

sheets. The latter case was solved using the dispersion

equation of Suetake and Griemsmann [1]. For k> 2kC the

curves for different numbers of sheets show remarkable

agreement. Such agreement will occur, however, only if

5/c<<l. The results indicate that for five or more sheets the

side walls have very little effect on the attenuation. The

interaction between the fields and the Iossy sheets is deter-

mined by the sheet configuration rather than the side wall.
Regardless of the shape of the external walls or whether they

are present, the attenuation level remains essentially un-

changed. The shape of the waveguide will not influence the

level of attenuation attainable as long as the waveguide cut-

off frequency of the waveguide is at most 60 percent of the

qperating frequency. The attenuating material can be placed

in the most advantageous position in the waveguide.

(a)

(c)

Fig. 4.

Suetake and Griemsmann derived an approximate expres-

sion for the peak attenuation

cr/1-L$

v“~max. — ——

2.C

for the infinite array of sheets. Note that a~.x = ~u.v.,,~e

~Z and that this is of the same form as am, the high fre-
quency asymptote for a completely filled wavemide. The. . . . A.
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(c)

Fig. 5.

attenuation for a completely filled waveguide is discussed

in Appendix B. This approximation is fairly good for the
parameter values of interest and it applies in the waveguide

calculation as well as for an infinite array. The frequency

at which the peaks occur bears an inverse relationship to

the sheet spacing; that is,

Fig. 6.

Fig. 7’.

The value ~~.. depends upon conductivity, however, for

conductivities in the range from 5 to 55 mhos/m fma.is very

nearly fixed.

A waveguide completely filled with lossy material has an

attenuation constant that increases monotonically with con-

ductivity at a given frequency. For intermediate frequencies

and large conductivity

dWpu 1
Cy+ —

y– skin depth

which is the usual approximation for good conductors. Fig-

ure 6 indicates that this increase occurs in waveguides with

resistive sheets only at the lower frequencies. This is reason-

able, however, since as conductivity increases the sheets be-

come very good conductors and tend to decouple the fields

between sheets. This is equivalent to each region between

sheets acting as a separate waveguide.
Figure 7 shows attenuation versus frequency curves for

the lowest-order LSM mode. Comparison with Fig. 4(a),

(b), and (c) reveals that the attenuation is much less than
for the lowest-order LSE mode. This is attributed in part

to the fact that the electric field for the LSM mode has a
component perpendicular to the sheets and the sheets have

little effect upon it.
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V. CONCLUSIONS

The propagation constants for a wave traveling down a

waveguide with uniformly spaced conductive sheets having

a finite width were found using an iterative computer tech-

nique. The results were shown to be quite similar, when sev-

eral sheets are present and ~/c<< 1, to that obtained for an

infinite array of parallel resistive sheets in free space. The

infinite array case assumes thin sheets having a surface re-

sistance. This case can be solved by computer or conformal

mapping techniques. The general shape of the attenuation

response can be determined through the solution of several

relatively simple equations established through conformal

mapping. The presence of metal walls around the Iossy

sheets have very little effect on the attenuation when five or

more sheets are present. The insensitiveness of the side walls

in modifying the attenuation due to the presence of the

sheets means that the lossy materials can be placed at the

most advantageous physical position.

APPENDIX A

Infinite Array of Parallel Resistive Sheets

Suetake and Griemsmann [1] considered microwave ab-

sorption of a plane wave incident on an infinite array of

parallel resistive sheets of infinite extent. They assumed that

the sheets are sufficiently thin that they can be completely

represented by an ohms-per-unit square value R,. The modes

considered are those having the direction of propagation

and the electric field vector parallel to the sheets, and for

which the center planes of the resistive sheets are planes of

infinite impedance. The dispersion equation obtained was

k= c
‘~~tank~=kc q

4 R.

where

c is the spacing between sheets.

R. is ohms-per-unit square value of the resistive sheets.

v = v’3, k= udpc evaluated between the sheets.
y is the z-directed propagation constant.

jkz is the x-directed propagation constant.

The finite thickness sheets studied on this program convert

to infinitely thin sheets by the relation R,= l/u6. Suetake

and Griemsmann concentrated on obtaining solutions by

conformal mapping techniques, whereas in this project more
accurate solutions were obtained by numerical methods us-

ing a digital computer.

The maximum value of attenuation for an infinite array
of resistive sheets, as determined by conformal mapping

techniques is

o-d76
ffmax=— —— .

2,C

While the frequency for the maximum attenuation cannot

be determined, it is possible to find the frequencies where

ffm.x is decreased to half its value. The frequencies where
~=; m~.X are given by

FREQUENCYI N GIIz

(a)

,-
,,,
=5CM
= 0.025 CM
= 32 MHOS/ME7ER

.

.. :
. .... .

01
,,

0 I 2 34 5 6 7 8 9 10

FREQUENCYIN GHz

(b)

Fig. 8.

f’=&[wRl
and

fH=4&ww-’
The computer solutions of the infinite array of parallel re-

sistance sheets provided an opportunity to verify the accu-

racy of the approximate solutions obtained through con-

formal mapping technniqes. The comparison is illustrated

by examples in Fig. 8(a) and (b). The condition for f~ to

be valid, based on the conformal mapping techniques is

T

““’X < a “

The agreement between the results found through conformal

mapping techniques and on the computer are quite good

below the limit cited. As the conductivity is decreased, the

high-frequency value for CY~.X/2 becomes too low in value.

This disagreement becomes even more pronounced at lower

values of conductivity.
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APPENDIX B

Attenuation in a Waveguide Completely Filled with Lossy

Material

Another limiting case of the parallel sheets having finite

conductivity in a waveguide is a guide completely filled with

lossy dielectric material. Since the case considered is for

sheets of variable thickness, only a finite number of sheets

are required to fill the guide with Iossy material. An explicit

expression for the attenuation constant of the filled guide is

easily obtained and this limiting case result permits deduction

of trends for a guide containing several sheets as parameter

values are changed.

The attenuation for a waveguide filled with material of

conductivity a is

4V1’
~.:

42
(k’ – k.’)’+ k’ ~ – (k’ – kc’)

e

where k, is the cutoff wavenumber for the appropriate mode

of the equivalent lossless guide, and k’ = U2Me.This expression

is valid for all frequencies and it shows some interesting

features for some limiting cases.

a)

b)

c)

d)

As ksO the attenuation approaches the limiting value

ao=ko.

Ask+ co the attenuation approaches the limiting value

c’. = +udp/e.

At k= k., the cutoff wavenumber for the equivalent

Iossless guide, CM= VaOaQ; that is, the geometric

mean of the low- and high-frequency asymptotic values.

For kc= ~u~~e the attenuation a = k, = ~u~p/e is con-

stant over the entire spectrum.

Figure 9 depicts the general form of the attenuation constant

as a function of frequency. The three solutions for the

attenuation in the waveguide show widely varying values

T
cc 1/

—————.——--_.————________F~~
26

Fig. 9. Attenuation in lossy homogeneous waveguide.

depending on the relationship between kc and ~Q~~e.

a) As noted previously, when k.= ~v~& the attenuation

is constant over the entire frequency spectrum.

b) If +J2~~> k., the attenuation monotonically in-

creases with frequency and asymptotically approaches

ir4P/e.

C) If $u~~< k., the attenuation monotonically de-

[1]

[2]

[3]

[4]

[5]

[6]

creases with frequency and asymptotically approaches

$ud~,
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