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Propagation Constants of a Waveguide Containing
Parallel Sheets of Finite Conductivity

HOWARD R. WITT, SENIOR MEMBER, IEEE, RITA E. BISS, MEMBER, IEEE,
AND EDWARD L. PRICE, SENIOR MEMBER, IEEE

Abstract—The propagation constants of a rectangular waveguide
containing periodic, parallel sheets having finite conductivity were deter-
mined using an iterative computer program. The dispersion equation was
found in a matrix formulation which was conducive to computer solution.
This equation was solved for various values of conductivity and sheet
spacing. Comparisons were made with the propagation constants found
assuming an infinite array of thin parallel resistive sheets in free space for
the case where the direction of propagation and the electric field vector
were both parallel to the sheets. The propagation constants for the infinite
array case have been determined by both conformal mapping techniques
for certain limiting conditions and by a computer solution of the dispersion
equation for sheet spacings and conductivities of interest. The results
should prove useful for the design of absorbing elements and terminations
for waveguides.

I. INTRODUCTION

OR PURPOSES of analysis, the waveguide was
Fassumed to be rectangular with perfectly conducting

walls and attenuation provided by an array of resistive
sheets of finite thickness parallel to the side walls. Using the
transverse resonance method, the dispersion equation was
written in a matrix formulation suitable for an iterative
computer program. Computer solutions were obtained for
several representative values of bulk conductivity and dif-
ferent quantities of sheets in a 30 cm wide waveguide. Con-
verting the lossy sheets to the alternate thin-sheet representa-
tion of ohms per unit square permitted direct comparison
with the infinite array representation.

Computer solutions to the infinite array of parallel re-
sistive sheets were also obtained both to check the range
of validity of the approximate solutions of Suetake and
Griemsmann [1] as well as to provide a comparison with
the waveguide approximation.

It is shown that when the frequency is 1.5 to 2 times the
TE,, mode cutoff frequency in the unloaded waveguide and
the number of sheets exceeds 3 or 4, the loaded waveguide
solutions closely approach the infinite array solutions. In
physical terms, the conducting boundary is decoupled by
the resistive sheets. Thus, an attenuating grid can be designed
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using the infinite array theory regardless of the cross section
of the duct—subject only to the limitation that the actual
grid contain at least 3 sheets.

11. MobDEL CONFIGURATION

The propagation constants for a single dielectric slab in
a rectangular waveguide [2]-[6], and the expected micro-
wave attenuation have been studied previously. A means for
determining the propagation constants of several parallel
sheets having finite conductivity in a rectangular waveguide
are discussed here. These results are compared to the propa-
gation constant and the impedance found for the funda-
mental TE mode of a plane wave propagating through an
infinite array of parallel resistive sheets [1] where the direc-
tion of propagation and the electric field vector were both
parallel to the sheets. In both media, the slab-loaded wave-
guide and the infinite resistive sheet array, the transcendental
equation was found through the use of a transverse reso-
nance procedure. For the infinite array case the dispersion
equation has been solved by conformal mapping techniques
[1]. In addition, a number of solutions of practical interest
were obtained through a computer solution of the dispersion
equation. The computer results provided more data than
that obtained by the conformal mapping solutions.

In the analysis presented in this paper a transverse reso-
nance procedure is used to examine the propagation char-
acteristics of a waveguide containing an arbitrary number of
uniformly spaced parallel sheets having finite conductivity.
The lossy sheets are parallel to two walls of the waveguide
and the outer walls are all assumed to be perfectly conduct-
ing. The results of the two approaches are compared and for
sheet spacing and conductivity values of interest, the results
are quite similar.

ITI. ANALYTICAL APPROACH

The model which was studied is shown in Fig. 1. There
is an arbitrary number of parallel resistive sheets of equal
spacing within a rectangular waveguide. A hybrid of the
usual E- and H-type modes is required for this problem and
it is convenient to classify the modes as longitudinal section
electric (LSE) or longitudinal section magnetic (LSM). The
LSE modes are those for which the electric field is confined
to longitudinal planes parallel to the resistive sheets. For
LSM modes the magnetic field is confined to planes parallel
to the resistive sheets.

There are a number of approaches to the problem. First,
Maxwell’s equations can be solved completely in each
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Fig. 1. Waveguide with parallel absorbing sheets.
homogeneous region separately; that is, in each resistive
sheet and each air space, and the fields matched at the
various boundaries. This procedure can always be carried
out, but it becomes extremely cumbersome for more than
one or two sheets. In addition, the entire process must be
repeated if the number of sheets is changed.

If the sheets are spaced periodically across the guide, then
a second method can be attempted. The conductivity is a
periodic function of x and may be expanded into a Fourier
series which, when substituted into the wave equation, yields
a form that applies everywhere within the guide. However,
the overall medium is now inhomogeneous and the separa-
tion of variables leads to Hill’s equation involving the co-
ordinate x. Formal solutions may be written down and the
boundary conditions applied, but the dispersion equation
takes the form of an infinite-by-infinite determinant. Ap-
proximate solutions for the allowed propagation constants
may be obtained only under quite restrictive assumptions.

A number of perturbation and variational techniques sug-
gest themselves, but it is found that either they are accurate
only for very limited ranges of parameter values or else
they are much too cumbersome to be useful. The transverse
resonance method, while not yielding all details of the solu-
tion, does supply the propagation constants which are all
that are desired in this analysis. The procedure involves
evaluation of transverse impedances in each region and im-
pedance matching at the interfaces between the regions.
This method is exact, can accommodate any number of re-
sistive sheets, and lends itself to computer solution.

Development of Working Equations
1) LSE Modes: Figure 1 depicts the model chosen. The
parameter c is the space between sheets and between the end
sheets and the walls. The permeability u, permittivity e,
conductivity ¢, and wavenumber k are
b= po, € =€, 0 =0 k?="ko = wluoe
between the sheets

. %0
U= o, € = keg, 0 = o9 k2 =Fk? = w“’uoe()(lc —j——)
weo

within the sheets. The electric field must satisfy the wave
equation
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where the value of k appropriate to the region is inserted.

The working equations for LSE modes will be found first.
Since the structure is uniform along the z-dimension, the z-
variations must be of the form e—<. For LSE modes the field
components are [2], [3]

RV
E.=0 H, = [— + k2‘//:|e—7»=
dx?
. 82
B, = jkZyye: H, = e
dxdy
5} a
E, = iji e e H, = —« j«e“ﬂ. (2)
dy ox
The potential function y satisfies
oW oW
—+—+kN¥=0 3
o | oy ¥ ®3)

where k2=~2+k?and k, and k are constants within a given
region. In (2) Z and k are given by
™

Z =Z7¢y= 5

€0

k=T

between the sheets

Z=ZT=/‘/——~M—0~——; E=Fk,
gy
eo<x—j“>

WEy

within the sheets.
Separating variables by letting ¥ = X(x) Y(y), we obtain

@y + £2Y =0

dy? v

d2X

g k22X = 0. (4)
X

Solving the differential equation in y and applying the
boundary conditions for the perfectly conducting waveguide
walls at y=0, b gives

Y, = A,coskyy (5)
where

nmw

kyn = 3 7 integer.

The separation constant k, is independent of location.
Solutions for the differential equation in x may be written
as a superposition of incident and reflected waves

X = ¢ 4 Refer = [1 + Re? ﬂc,x]e»jk,z (6)

where R is a transverse reflection coefficient. The separation
constant k, has one value in air and another in the sheets.
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Utilizing the results of (2), (5), and (6) the electric field
vectors can be expressed as

E, = Ejt 4 E;~ = G,[1 + Re?ker]gker )
E, = E;+ + E; = G.[1 + Retas|e ke (8)
where Gy, z)=jkZyYe v and G.y, z)=jkZ(dY/dy)e.
The + and — superscripts denote the portions of the solu-

tions that vary as e~ and e#%, respectively.
We define a 4-x directed impedance as

The fields parallel to the longitudinal sheets are
E; = ay[Ey+ + Ey_] + aZ[Ez+ + Ez—]
H; = a,[H,;* + H; ] + a.[H.t + H]
and these may be transformed into
E; = V(z)[a,G, + a.G.]
H; = I(z)[—a,G. + a.G,]

through use of (7), (8), and (9). The voltage V(x) and the
current /(x) are defined by

V(z) = [1 4+ Reli==]g—dka (10)

e Gz

I(x) = [1 — Re?er] (11)

At some new location (x4d), the voltage and current are

V(i + d) = [1 + Retkletd ]g—sks(etd

¢~ ta (o)

(12)

I(@ + d) = [I — Retetta]

(13)

z

The voltage and current at one location may be expressed
in terms of the voltage and current at another location in
the same medium as follows:

Viz) = muVix 4+ d) + mel(x + d)

In matrix notation these equations become
V(z) Viz+d
1) =0 o)
I(z) Iz +d)

Lo mellic ol
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Fig. 2. Network representation of medium.

Solving (10)—(13) for the cocfficients yields
M1 = My = €OS k.d
My = jZg sin k.d

jsin k.d

Mey =
T
The transformations correspond to a representation of the
medium by a two-port network in the x-dimension as de-
picted in Fig. 2. At a boundary between two different media
the tangential electric and magnetic ficlds must be con-
tinuous, hence the voltage and current as defined here must
be continuous. Transforming across a boundary is equivalent
to connecting two networks in tandem.
Matrices [M,] and [M,] are the matrix [M] evaluated for
appropriate distances in the first and second media, respec-
tively. Then

o] - o] o (3] oea ]

which combine to give

] = e[ ] -]

where [P]=[M:][M,]. This procedure may be carried
through as many sections as desired.

Suppose there are N identical resistive sheets in the guide.
There are then 2N+-1 regions and 2N+1 matrices. The
transformation from x=o0 to x=a then becomes

("] = ee - Gt [ 2]

I, Tonye
= [ar°] [V”“]

I 2N+1
where

m1® Mo’

e =

Ma1®

_J = [M.][M;] - - [Monss).

Mag?

For our model all odd matrices are identical and all even
matrices are identical. Let [M,] represent the matrix for a
free space section of width ¢ and [M,] the matrix for a
resistive sheet of width 8. The elements for these matrices are

o8 keoC  jZu0 sin kgoc]
[My] = jsinkoc (149)
cos kyoc
L Za:() -
[c0S kord  jZur sin ey 67
[Ms] = | jsink,, s (15)
7 cos k., 0
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Unit cell equivalences.

where k., is an unknown to be determined, and

erz = k:c02 + (K - 1)]602 - jw[J.()O'o

w,
Zuo =%’-‘-" and  Z., =

0 ka:r

wWHo

An adjacent air space and resistive sheet can be repre-
sented as an equivalent cell as shown in Fig. 3. Other equiva-
lent cells are possible but this one is most convenient for this
application since it involves only two adjacent regions. Then
for N unit cells in tandem plus one air space

V 14 V
[ 1:l _ [P]¥[ar] [ 2N+2:| — [a] I: 2N+2:| (16)
I Ionge Ionye
and
0 0
pre) = [0 = el an
Mo1®  Mag®
From (16) and (17)
V= m11°V2N+2 + m12OI2N+2 (18)
I, = m21°V2N+2_+ M2l 2n o (19)

The dispersion relationships can be stated in a general
sense in terms of transverse impedances at x=0 and x=a.
If we define Z;=V,/I, and Zr=Vyy s/ l2n 2, Substitute into
(18) and (19) and equate the determinant to zero, we obtain
the dispersion equation

[m210ZR + m220]ZL = m1:°Zr + m1".

If, however, the terminations are symmetric as in a wave-
guide, we recognize two mode types. For one type E; is an
even distribution about x=a/2 and for the other type E; is
an odd distribution about x=a/2. Then

Vonvge = & Vi; Iswye = ¥ I  upper sign for even modes

lower sign for odd modes

and using these in (18) and (19) gives two expressions

Fmig®
Zy=—— 20)
1 F mn®
1 £ mage®
g, == (21)
+mo®

For a waveguide with perfectly conducting walls E;=0 at
x=0and x=aq, thus Z;=0. For this particular case, (20) re-
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duces to the dispersion equation
m12° =
which yields all LSE modes. The alternate form
Mo = T 1
is obtained from (21). Even modes are given by m0= —1

and odd modes by m.,°= 1. Multiplication of the matrices
to obtain explicit formulas for 71:,° or ms.°® in terms of k.o
need not be written out as this can be included in the com-
puter program as an iterative process.

2) LSM Modes: The development for LSM modes is
identical with that for LSE modes. The only difference is in
the expression for the x-directed impedance which for LSM
modes becomes

Lk
k

Zy = (22)
The dispersion equation for LSE modes applies to LSM
modes if the LSE impedance is replaced by the LSM imped-
ance given in (22).

1V. CoMPUTER RESULTS

A digital computer was used to find the propagation con-
stants for the waveguide containing conductive sheets. The
procedure involved assuming an initial value for k., and
then making successive corrections to ko to make ;5% or
ma® T 1 approach zero. The estimation procedure requires
careful attention to ensure that solutions for the desired mode
are obtained. A similar procedure was used to solve the
dispersion equation for the infinite array of sheets as pre-
sented in Appendix A.

Practical considerations dictated the choice of parameter
values. Computations were made for conductive sheets of
thickness 0.025 c¢cm, and for waveguides of 30 cm and 40
cm width, Frequencies from 1 to 12 GHz and conductivities
from 5 to 55 mhos/m were considered. This frequency range
excludes the cutoff region for the equivalent lossless wave-
guides. The permittivity of the lossy material was assumed
to be 3¢, although it was found that for the thin sheets of
interest here the attenuation is only very slightly dependent
upon permittivity. In actual lossy materials the conductivity
and permittivity are frequency sensitive, however, such vari-
ations with frequency were not included in this program.

Most data were obtained for lowest-order LSE mode since
it is the dominant mode of the structure. Some results for
an LSM mode were found for comparison purposes. A mode
numbering system compatible with the numbering system
for the waveguide with the sheets removed cannot be estab-
lished. This occurs because of the mode dependence upon
conductivity. For low conductivity the lowest-order LSE
mode corresponds closely to the LSE;, mode of an empty
waveguide. As conductivity is increased, the sheets tend to
decouple the sections of the guide and the lowest-order LSE
mode approaches the LSEy,1,0 mode of the empty wave-
guide, where N denotes the number of sheets.

The attentuation of a wave propagating in the LSE mode
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down a waveguide for various values of conductivity are
shown on Fig. 4(a), (b), and (c). The values are shown for
three, five, and seven conductive sheets uniformly spaced
across a waveguide of 30 cm width. The curves at each value
of conductivity show attenuation peaks of increasing ampli-
tude and greater width in frequency as the number of sheets
is increased. The increase in attenuation with number of
sheets is simply a result of the guide containing a larger
amount of resistive material. For the dimensions and con-
ductivities considered %o+/u/e>k,. Thus, in a waveguide
completely filled with conductive material (as discussed in
Appeandix B) the attenuation is a monotonically increasing
function of frequency and approaches a.,,=3o+/i/e as fre-
quency approaches infinity. This represents the maximum
attenuation that can be achieved as the number of sheets is
increased. The three cases shown have peaks much below
this maximum; however, this limit indicates that the peaks
must become higher, shift toward higher frequencies and
become broader as the number of sheets is increased. The
attenuation curves also show a decrease and broadening of
the peaks with decreasing conductivity. For sufficiently low
conductivities the attenuation would become a mono-
tonically decreasing function of frequency above the cutoff
frequency, since a completely filled waveguide exhibits a
monotonically decreasing attenuation with frequency for
Lov/u/e<k,.

At sufficiently low frequencies the resistive sheets act
much like good conductors and tend to decouple the fields
in the regions separated by the sheets. Losses are low, but
attenuation due to the cutoff characteristics of the guide
may be high. At sufficiently high frequencies the sheets be-
have as good dielectrics and losses are again low. At some
intermediate frequency attenuation due to the resistive
sheets will be a maximum and the curve peaks. For a com-
pletely filled guide this peak is at infinity whereas for par-
tially filled guides it occurs at a lower frequency. The ampli-
tude of the peak decreases with conductivity and for low
conductivities there may not be a peak above the cutoff
frequency of the equivalent lossless guide.

Attenuation versus frequency for constant sheet spacing
but different numbers of sheets is shown in Fig. 5(a), (b),
and (c). The three cases are for a spacing of 5 cm in a guide
of 30 cm width, 40 cm width, and for an infinite array of
sheets. The latter case was solved using the dispersion
equation of Suetake and Griemsmann [1]. For k>2k, the
curves for different numbers of sheets show remarkable
agreement. Such agreement will occur, however, only if
8/c<<1. The results indicate that for five or more sheets the
side walls have very little effect on the attenuation. The
interaction between the fields and the lossy sheets is deter-
mined by the sheet configuration rather than the side wall.
Regardless of the shape of the external walls or whether they
are present, the attenuation level remains essentially un-
changed. The shape of the waveguide will not influence the
level of attenuation attainable as long as the waveguide cut-
off frequency of the waveguide is at most 60 percent of the
operating frequency. The attenuating material can be placed
in the most advantageous position in the waveguide.
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Suetake and Griemsmann derived an approximate expres-
sion for the peak attenuation
o /u b

2 € ¢

Umax =

for_the infinite array of sheets. Note that omax=3caverage
V/u/€ and that this is of the same form as a,, the high fre-
quency asymptote for a completely filled waveguide. The
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attenuation for a completely filled waveguide is discussed
in Appendix B. This approximation is fairly good for the
parameter values of interest and it applies in the waveguide
calculation as well as for an infinite array. The frequency
at which the peaks occur bears an inverse relationship to
the sheet spacing; that is,

1

fmaxa"" ‘
c

6
FREQUENCY 1N GHz

Fig. 7.

The value fi.. depends upon conductivity, however, for
conductivities in the range from 5 to 55 mhos/m f.... is very
nearly fixed.

A waveguide completely filled with lossy material has an
attenuation constant that increases monotonically with con-
ductivity at a given frequency. For intermediate frequencies
and large conductivity

wpo 1
a—=p/—=—T"""+
2 skin depth
which is the usual approximation for good conductors. Fig-
ure 6 indicates that this increase occurs in waveguides with
resistive sheets only at the lower frequencies. This is reason-
able, however, since as conductivity increases the sheets be-
come very good conductors and tend to decouple the fields
between sheets. This is equivalent to each region between
sheets acting as a separate waveguide.

Figurc 7 shows attenuation versus frequency curves for
the lowest-order LSM mode. Comparison with Fig. 4(a),
(b), and (c) reveals that the attenuation is much less than
for the lowest-order LSE mode. This is attributed in part
to the fact that the electric field for the LSM mode has a
component perpendicular to the sheets and the sheets have
little effect upon it.
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V. CONCLUSIONS

The propagation constants for a wave traveling down a
waveguide with uniformly spaced conductive sheets having
a finite width were found using an iterative computer tech-
nique. The results were shown to be quite similar, when sev-
eral sheets are present and §/¢<1, to that obtained for an
infinite array of parallel resistive sheets in free space. The
infinite array case assumes thin sheets having a surface re-
sistance. This case can be solved by computer or conformal
mapping techniques. The general shape of the attenuation
response can be determined through the solution of several
relatively simple equations established through conformal
mapping. The presence of metal walls around the lossy
sheets have very little effect on the attenuation when five or
more sheets are present. The insensitiveness of the side walls
in modifying the attenuation due to the presence of the
sheets means that the lossy materials can be placed at the
most advantageous physical position.

APPENDIX A
Infinite Array of Parallel Resistive Sheets

Suetake and Griemsmann [1] considered microwave ab-
sorption of a plane wave incident on an infinite array of
parallel resistive sheets of infinite extent. They assumed that
the sheets are sufficiently thin that they can be completely
represented by an ohms-per-unit square value R,. The modes
considered are those having the direction of propagation
and the electric field vector parallel to the sheets, and for
which the center planes of the resistive sheets are planes of
infinite impedance. The dispersion equation obtained was

c is the spacing between sheets.

R, is ohms-per-unit square value of the resistive sheets.
7 =vu/¢, k=w\/ue evaluated between the sheets.
v is the z-directed propagation constant.

Jk= is the x-directed propagation constant.

The finite thickness sheets studied on this program convert
to infinitely thin sheets by the relation R,=1/05. Suetake
and Griemsmann concentrated on obtaining solutions by
conformal mapping techniques, whereas in this project more
accurate solutions were obtained by numerical methods us-
ing a digital computer.

The maximum value of attenuation for an infinite array
of resistive sheets, as determined by conformal mapping
techniques is
o )

€ C

Omax =~

While the frequency for the maximum attenuation cannot
be determined, it is possible to find the frequencies where
Qmeax 18 decreased to half jts value. The frequencies where
a=7F ama are given by
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The computer solutions of the infinite array of parallel re-
sistance sheets provided an opportunity to verify the accu-
racy of the approximate solutions obtained through con-
formal mapping technniqes. The comparison is illustrated
by examples in Fig. 8(a) and (b). The condition for fz to
be valid, based on the conformal mapping techniques is

fr =

and

o
V2e¢
The agreement between the results found through conformal
mapping techniques and on the computer are quite good
below the limit cited. As the conductivity is decreased, the
high-frequency value for am../2 becomes too low in value.

This disagreement becomes even more pronounced at lower
values of conductivity,

Qmax <
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APPENDIX B

Attenuation in a Waveguide Completely Filled with Lossy
Material

Another limiting case of the parallel sheets having finite
conductivity in a waveguide is a guide completely filled with
lossy dielectric material. Since the case considered is for
sheets of variable thickness, only a finite number of sheets
are required to fill the guide with lossy material. An explicit
expression for the attenuation constant of the filled guide is
easily obtained and this limiting case result permits deduction
of trends for a guide containing several sheets as parameter
values are changed.

The attenuation for a waveguide filled with material of
conductivity ¢ is

a= —1:4/,‘/(702 — k)t 4 sz—ﬂ— — (k2 — k?)
2 €

where k. is the cutoff wavenumber for the appropriate mode
of the equivalent lossless guide, and k2= w?ue. This expression
is valid for all frequencies and it shows some interesting
features for some limiting cases.

a) As k—0 the attenuation approaches the limiting value
as=k,.

b) As k— o the attenuation approaches the limiting value
o =%av/11/e.

¢) At k=k., the cutoff wavenumber for the equivalent
lossless guide, a.0=+/aox,; that is, the geometric
mean of the low- and high-frequency asymptotic values.

d) For k,=3}0+//e the attenuation a =k, = Lo+/u/< is con-
stant over the entire spectrum.

Figure 9 depicts the general form of the attenuation constant
as a function of frequency. The three solutions for the
attenuation in the waveguide show widely varying values

239

ol
RN

o
x,- ke z ; eﬁ_
k____il/ﬂ_
F3 X3

. - -

Fig. 9. Attenuation in lossy homogeneous waveguide.

depending on the relationship between k, and o+/1/.

a) Asnoted previously, when k,= 1o+/u/e the attenuation
is constant over the entire frequency spectrum.

b) If 462v/u/e>k., the attenuation monotonically in-
creases with frequency and asymptotically approaches
joviu/e.

©) If %ov/u/e<k., the attenuation monotonically de-
creases with frequency and asymptotically approaches
Joviu/e.
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